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Some aspects of the diffraction of electrons by single crystals are discussed ush~g low-order ap- 
proximations to the general theory developed in the first paper of this series (Cowley & Moodie, 
1957) and some qualitative arguments concerning general results are presented. 

The first-order approximation involves the treatment of a crystal as a phase object for electrons. 
This leads to a complex form for the atomic scattering factor and the struetttre factor which intro- 
duces complications to, but opens up new possibilities for, the process of structure analysis from 
single-crystal electron diffraction patterns. 

It is shown that forbidden reflections cannot be generated by dynamic scattering effects in the 
symmetrical spot patterns obtained when the electron beam is parallel to a principal crystal axis, 
but lattice defects can give rise to forbidden reflections in such patterns from thick crystals. 

1. Introduction 

In  the first paper of this series (Cowley & Moodie, 
1957; hereafter referred to as I) there was described 
a general theory of the scattering of electron waves 
by the potential fields of atoms and crystals, based 
on the new formulation of physical optics recently 
presented (Cowley & Moodie, 1958). The effect on 
the electron wave function of a three-dimensional 
potential field was approximated by the effect of a 
large number of closely spaced two-dimensional 
potential fields. 

In particular, expressions were derived for the 
amplitude distributions in the diffraction pattern of 
a crystal assumed to be of infinite extent and perfectly 
periodic in directions perpendicular to the incident 
electron beam, the diffraction pattern being defined 
as the angular distribution of scattered amplitude at 
infinity, or the positional distribution on the back 
focal plane of an ideal thin lens, for perfectly coherent 
and parallel incident radiation. In the second paper of 
this series (Cowley & Mcodie, 1959) it was shown that, 
provided excessively large electron sources are not 
employed, the diffraction pattern from such a crystal 
is independent of the coherence properties of the 
incident radiation and has ~n intensity distribution 
given by convolution of the diffracted intensity distri- 
bution for a point source with the intensity distribution 
of the source, suitably scaled. It is therefore sufficient 
for our purposes to consider only the point-source 
diffraction patterns. 

In the present paper we consider in greater detail 
the diffraction patterns given by such extensive thin 
crystals and derive some results of interest for practical 
electron diffraction investigations. In particular we 
consider the extensive patterns of spots given by very 
thin single crystals when the incident electron beam 

is perpendicular to a principal plane of the reciprocal 
lattice. Such patterns have been used as the basis 
for crystal structure analysis (Cowley, 1953). 

The principal limitation to their use in this way is 
that  at present the techniques of specimen preparation 
are not sufficiently developed to ensure that  the 
thickness of the crystals used is always less than the 
limiting thickness beyond which the kinematic theory 
of electron diffraction ceases to be an adequate 
approximation. On the other hand no adequate 
theoretical t reatment has been available to indicate the 
way in which the diffraction patterns may be modified 
when the thickness exceeds this limit and dynamic 
scattering effects become appreciable. The original 
dynamic theory of Bethe has been applied only to 
eases where two, three and, to a limited extent, four 
strong beams exist in the crystal simultaneously 
(see, for example, Heidenreich, 1950). It  would appear 
that  the theory outlined in I allows a new and probably 
more fruitful approach to the case of dynamic scat- 
tering for the large number of simultaneous reflections 
given by relatively thin crystals. 

We employ the methods of approximation which 
were discussed in I. Firstly, the amplitude scattered 
in any direction may be expressed as the sum of c0n- 
tributions from electrons scattered 1, 2, 3 . . . n  times. 
For crystals which are not too thick in the beam direc- 
tion these contributions form the terms of a rapidly 
convergent series. Secondly, the three-dimensional 
potential distribution may be approximated by a 
number of two-dimensional distributions, appro- 
priately spaced. The approximation improves as the 
number of two-dimensional distributions is increased. 

2. F irs t -order  a p p r o x i m a t i o n s  

When we consider the scattering of electrons through 
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angles of only a few degrees by a potential field which 
is of very small extent in the beam direction, the effect 
of the potential field on the electron beam may be 
approximated by the effect of a single two-dimensional 
potential distribution on a plane perpendicular to the 
beam, given by 

~(x, y) = of(x, y, z).dz , (1) 

where the beam is assumed to be parallel to the z-axis. 
If we neglect the term Z(x, y) which appears in I, 

representing the decrease in amplitude due to inelastic 
scattering of electrons, the effect of the potential field 
on the electron wave function is a phase change 
represented by a factor 

q~(x, y) = exp  {i(~qJ(x, y ) } ,  (2) 

where a is a constant equal to 27~m~/h 2. 
The corresponding diffraction patterns are then 

given by the Fourier transform of q~ (x, y), as 

U(u, v) = 3 [exp {i~T(x, y)}] 
= ~ [cos ~ ( x ,  y ) ]+i~  [sin ~ ( x ,  y)] . (3) 

This is the approximation discussed in section 7(a) 
of I. Apart  from the fact that  the Ewald sphere is 
replaced by a plane, this approximation goes beyond 
the ordinary kinematic theory of diffraction in that  it 
takes account of the phase nature of the scattering 
material, but does not include the full range of dynamic 
scattering effects in that  it ignores the Fresnel diffrac- 
tion effects operating when the crystal has finite 
thickness to spread the influence of each atom on the 
electron wave over an increased area of the exit face. 

This approximation should be very good if scattering 
by individual atoms, rather than crystals, is considered 
since then the Ewald sphere curvature and multiple 
scattering effects should not influence the scattering 
distribution appreciably. The diffraction pat tern in 
this case corresponds to the atomic scattering factor 
which, from (3), is given by 

g(u, v) = ~ [exp {~o~(x, y)}] 
=d(u,  v)+iagB(u, V)--½(~{gB(u, V)*gB(u, V)}--. . .  , (4) 

where the cLfunction represents the incident beam 
and gB(u, V) is the atomic scattering factor in the 
kinematic approximation as given by the first Born 
approximation in quantum-mechanical scattering 
theory. The atomic scattering factor so defined is 
obviously complex. I t  is readily shown that  its be- 
haviour is qualitatively the same as tha t  of the complex 
atomic scattering factors derived by Schomaker & 
Glauber (1952) using the second Born approximation 
and those of Ibers & Hoerni (1954) who used the 
partial waves scattering theory. The phase angle in- 
creases with the atomic number of the atom, the 
scattering angle and the electron wave length. A 
quanti tat ive comparison of the values of g(u, v) from 

(3) with those calculated by Ibers & Hoerni (1954) 
is being made and may be published shortly. 

Schomaker & Glauber (1952) pointed out tha t  the 
kinematic approximation may not be sufficiently 
accurate for electron diffraction work when scattering 
from both heavy and light atoms is involved. When 
scattering by crystals is considered, the maximum 
values of ~(x, y) as defined by (1) will be greater than 
tha t  for a single atom by a factor equal to the number 
of atoms exactly in line in the beam direction. We 
must therefore reject the kinematic approximation 
even for very thin crystals when a wide range of 
atomic numbers is involved, and use as a first ap- 
proximation the analogue of (4) for periodic ~(x, y), 
thus 

u(h, k) = ~ [exp { i ~ ( x ,  y)}] 

= ( ~ ( h , k ) + i ( ~ E ( h , k ) - ~ { E ( h , k ) .  E ( h , k ) } - . . . ,  (5) 
P 

where E(h, k) is the kinematic structure factor. 
From (3) the scattering amplitude is given by the 

sum of the transforms of a cosine and a sine term, 
both of which will be complex unless ~(x, y) has a 
centre of symmetry.  The function cos a~(x, y) may 
be considered as the sum of a centrosymmetric 
function ½[cos a~(x, y)+cos a ~ ( - x ,  - y ) ]  and an anti- 
centrosymmetric function 

½[cos ~ ( x ,  y ) - c o s  a ~ ( - x ,  - y ) ]  . 

The Fourier transforms of these two functions may 
be written Cco~ and iAoo.~ respectively. For the sine 
function we define, similarly, Csin and iAsi,. 

Then 

U(h, k) = Cco~+iAo,,s+i(C~i,,+iA~i~,) 
= (Ccos-Asin)+i(Qi,+Aoo~) • 

The intensities of the diffraction spots will be propor- 
tional to 

I(h, k) = ]U(h, k)] 2 = ( C c o s - A s i n ) 2 +  ( C s i n + A e o s )  2 . 

If the indices h, k be replaced by - h ,  -/c, the signs 
of the A~i . and A¢o ~ will be reversed, so tha t  

-a 2 (Csin__Acos)2 I ( - h , - k )  = (Coos, Asin) + 

For non-centrosymmetric structures, therefore, the 
intensity distribution in the diffraction pat tern is not 
symmetric about the origin. 

For convenience, we limit our considerations to 
centrosymmetric crystals, for which the intensity of 
the diffraction spots will be proportional to 

I(h, k) = (~ [cos a~(x, y)]}~+(~ [sin a~(x, y)]}2. 

If such intensities were to be used for purposes of 
structure analysis of the crystal, the first step would 
be to calcu]ate the Patterson function, given by 

P(x, y) = [(cos aq~(x, y ) } .  {cos a ~ ( - x ,  -y)}] 
+[{sin a~(x, y ) } .  {sin a ~ ( - x ,  -y)}] . (6) 
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This  is to  be compared  wi th  the  no rma l  k inema t i c  
P a t t e r s o n  func t ion  

P ~ . ( x ,  y) = (W(x ,  y) . ( W ( - x ,  - y )  . (7) 

I n  order  to  gain  some impress ion  of the  modi f i ca t ion  
of the  P a t t e r s o n  func t ion  represen ted  by  (6), we have  
ca lcu la ted  the  peak  shapes which  would be ob t a ined  
for Gauss ian  a toms  of cons t an t  wid th  bu t  var iab le  
he ight ,  i.e., t a k i n g  

a~(x,  y) = c exp ( - x  2) 

w i th  values  of c f rom 1.0 to  8.0 to  represen t  va r i a t ions  
i n the  a tomic  n u m b e r  of the  a toms  or the  c rys ta l  

c = 1  
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Fig. 1. The real and imaginary parts of the function 
exp {ic exp (--x2)} and the Patterson peak given by the 
convolution exp {ic exp (--x2)} ~ exp {--ic exp (--x2)} for 
c----- 1 ,3,5 and 8. 

th ickness .  I n  Fig. 1 are shown the  peak  shapes  for 
one-d imens iona l  P a t t e r s o n  peaks  cor responding  to 
vectors  be tween  ident ica l  Gaussian a toms,  ob t a ined  
by  graphica l  eva lua t ion  of the  convolu t ions  

cos {c exp ( - x g ) } .  cos {c exp ( -x2)}  and  

sin {c exp ( - x 2 ) } .  sin {c exp (-x2)} 

for var ious  values of c. The way  in which  the  peak  
heights  and  the  to t a l  areas of the  peaks  v a r y  wi th  c 
is g iven  by  the  curves of Fig. 2. 

i 

l 
/ 

i 

Peak height i 
and area 

0 1 2 4 c ._ ~ 6 8 

Peak height 
- -  - -  Peak area 
. . . . . .  Values for 

kinematic theory 

Fig. 2. The variation with c of the peak height (continuous line) 
and peak area (dashed line) for Patterson peaks similar to 
those shown in Fig. l, compared with the variation of the 
peak height and area (dotted line) given by the kinematic 
theory. The ordinates have been adjusted so that the kine- 
matic peak height and peak area curves coincide. 

I t  is seen t h a t  the  peaks  of the  P a t t e r s o n  m a p  g iven  
by  (6) differ  apprec iab ly  from those  of the  k i n e m a t i c  
P a t t e r s o n  map,  g iven by  (7), for values of c g rea te r  
t h a n  abou t  2. Re la t ive  to the  k inema t i c  P a t t e r s o n  
peaks,  the  peaks  decrease in he igh t  and  also in wid th  
as c increases. Subs id ia ry  peaks  appea r  for c g rea te r  
t h a n  5 and  slowly increase in n u m b e r  and  in size 
re la t ive  to the  cent ra l  peak  as c increases fur ther .  

The  order  of m a g n i t u d e  of such effects in prac t ice  
can be apprec ia ted  as a resul t  of rough  ca lcula t ions  
which give c m 1 for a single u r a n i u m  a t o m  a n d  
c ~ 0.1 for a single carbon a tom.  I f  there  are n a toms  
super imposed  in the  d i rec t ion  of the  beam, the  effects 
ob t a ined  correspond to p u t t i n g  c = n for u r a n i u m  
a toms  or c = n / lO for  carbon a toms.  

In Fig. 3(a) and (b) are plotted the peak shapes 
corresponding to vectors  be tween unequa l  Gauss ian  
a toms  represented  by  

exp {ic 1 exp ( -x2)}  and  exp {ic~ exp (-x2)}.  

I n  Fig. 3(a), c 1 = 0.5, and  c 2 is var ied  f rom 1.0 to  6. 
I n  Fig. 3(b), c 1 = 1.0 and  c e is va r ied  f rom 1-0 to  6. 

I t  thus  appears  t ha t ,  in  ex t reme  cases, the  cent ra l  
par t s  of P a t t e r s o n  peaks  corresponding to  vectors  
be tween a toms  of widely  di f ferent  a tomic  n u m b e r  m a y  
be v e r y  much  reduced in he igh t  and  m a y  even  become 
negat ive .  
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" C=  2 

(a) 

c=2 

(b) 

Fig. 3. The Patterson peak shapes given by evaluating the 
convolutions 

COS {C 1 exp (--xe)} . cos {ce exp (--xe)} 
sin {c 1 exp (--x2)} . sin {c 2 exp (--x2)} . 

For 3(a): c I ---- ½, c 2 = 1,2,4 and 6. 
For 3(b): c 1 = l, c e = 1,2,4 and 6. 

and 

We now make the plausible assumption that  the 
results obtained for one-dimensional Gaussian atoms 
may  be applied to give at least a qualitative indication 
of the equivalent results for real three-dimensional 
atoms or their two-dimensional projections, and 
proceed to consider how the failure of the kinematic 
scattering approximation may affect the processes of 
the structure analysis of crystals. For thin crystals in 
which the d~viations from kinematic scattering are 
not excessive, it  is evident that  the principal effect 
on the form of Patterson maps will be that  the peaks 
representing interactions between heavy atoms will be 
reduced in height and diameter while peaks represent- 
ing interactions between light atoms may not be 
appreciably affected. Peaks from light-heavy atom 
interactions may be somewhat broadened and flat- 
tened. However, the positions of the peaks will remain 
unchanged, and, provided that  peak heights can be 
correctly interpreted, an examination of the Patterson 
maps may  lead to a correct determination of the 
crystal structure. 

If electron diffraction patterns could be obtained 

from crystals of one substance with several different 
known thicknesses, it would be possible to confirm the 
predictions as to the variation of Patterson peak shape. 
It  would be possible to extrapolate to zero thickness 
and so obtain the true kinematic Patterson map and 
intensity distribution. Further, the dependence of the 
peak shape and its variation with crystal thickness on 
the nature of the atom pairs involved in its production 
would allow techniques of structure analysis to be 
developed leading to an unambiguous structural 
determination directly from experimental data. These 
techniques would be similar to those involving the 
use of anomalous X-ray scattering, since in each case 
advantage is taken of a controlled change in the 
relative phases of scattering by atoms of differing 
atomic number. 

If sufficient was known of a structure to allow at 
least one Patterson peak to be definitely identified 
as being given by atom pairs of a given type, the form 
of this peak could be used to establish a scale of 
thickness. I t  would then be unnecessary to make 
thickness measurements on all crystals used. 

An alternative to varying the crystal thickness 
would be to vary the wavelength, i.e., the accelerating 
voltage, of the incident beam. This would have the 
advantage that  all patterns could be obtained from 
the same crystal, held in the same orientation with 
respect to the electron beam. Usually, also, measure- 
ments of accelerating voltage may be made more 
conveniently and accurately than measurements of 
crystal thickness in the ranges which would be 
employed. However, the range of accelerating voltage 
desirable for successful extrapolation to zero wave- 
length may  be considerable, since a is proportional 
to Wo½. 

The above results have been based on assumptions 
which limit their direct application to practical prob- 
lems. By approximating to a crystal by a single two- 
dimensional distribution of potential, the curvature of 
the Ewald sphere has been ignored. This approxima- 
tion is satisfactory for the electron wavelengths 
normally employed only for very thin crystals or for 
diffraction spots not too far from the origin. If patterns 
could be obtained for wavelengths much shorter than 
that  for 50 kV. electrons, the extrapolation process 
used to correct for dynamic scattcring cffects would 
also correct for the effect of the finite radius of 
curvature of the Ewald sphere, although the latter 
effect may reduce the accuracy of the extrapolation 
process. 

If the crystal is approximated to by two two- 
dimensional potential distributions, rather than one, 
the influence of the curvature of the Ewald sphere 
is introduced in part  along with the effect of the 
Fresnel diffraction between distributions, and ap- 
proximation by a greater number of two-dimensional 
potential distributions introduces the effect of the 
curvature in a progressively more accurate form. Such 
higher approximations may be calculated following 
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section 7 of I, but do not appear to introduce any 
novel features of general interest and so will not be 
treated in detail here. 

A further assumption which has been made is that  
the crystal is perfect. This is rarely true in practice. 
Experience has shown that  small crystals, in the range 
of sizes useful for electron diffraction work, frequently 
show a considerable amount of disorder, often in the 
form of stacking defects. The effects of one or more 
stacking defects on the diffraction pattern produced 
will be discussed in a subsequent section. 

3. The appearance of ' forbidden'  reflections 

'Forbidden' reflections are those for which the struc- 
ture factor in the kinematic diffraction theory is zero 
as a result of the space-group symmetry of the crystal 
structure. When, however, the indices of a 'forbidden' 
reflection can be expressed in the form h~ +he,/c~ +/ce, 
11+19 , where hi, ]c],l 1 and he, ks, 12 are indices of 
allowed reflections, it is frequently observed that the 
forbidden reflections in electron diffraction spot pat- 
terns occur with appreciable intensity. This is usually 
interpreted as being the result of dynamic scattering. 
Heidenreich (1950), for example, explained the ap- 
pearance of the 'forbidden' (222) reflection from a 
diamond-type lattice as arising from dynamic inter- 
action of diffracted beams by applying Bethe's 
dynamic theory to the ca~e that  only three strong 
beams exist in the crystal lattice. It  has been assumed 
that, if a similar treatment of the case of many strong 
beams were possible, it would similarly lead to the 
prediction of forbidden reflections in the extensive, 
symmetrical spot patterns obtained when the incident 
beam is parallel to a principal lattice axis of a thin 
crystal. Our present approach to dynamic diffraction 
theory allows us to treat this case with greater facility 
and demonstrate that  such an assumption is not 
justified. 

The effect on an incident electron wave of a parallel- 
sided crystal plate which may be assumed of infinite 
extent in directions perpendicular to the beam, may 
be approximated by the effect of a large number, N, 
of two-dimensional potential distributions, ~ ( x ,  y), 
spaced at intervals /Iz = H / ( N - 1 ) ,  where H is the 
crystal thickness. The approximation may be made 
as good as required by taking N sufficiently large. 
In particular if N is made equal to the number of unit 
cells of the crystal lattice in the beam direction the 
approximation will be sufficiently good for all practical 
purposes unless the unit-cell dimension is very large 
(i.e., hundreds of ~ g s t r S m s  under normal diffraction 
conditions). Then all the q~(x, y) will be identical, 
each representing the projection of the potential 
distribution of one unit-cell thickness. 

For a plane-parallel incident beam normal to the 
crystal face, the wave function on the exit face of the 
crystal is then given by the formulation of Cowley & 
Moodie (1958) as 

 lx l=  lx l[ lq, l,xyl [2q2,x ) 

• .- $ Pl(X, Y)/ , (8) 
J . v - 1  

where Pl (x, y) is the propagation function. Convolution 
by this function represents the effect on the wave 
function of propagation from one of the scattering 
planes to the next over a distance R 1 = R 2 = . . . R ~ -  1. 
The effect of each scattering plane on the wave func- 
tion is given, as before, by multiplication by 

qn(x, y) = exp {iacp(x, y)} . 

It  may be noted that  equation (8) is of a 
more general form than the equivalent expressions 
previously used, for example, in I, since the propaga- 
tion function is not limited to that appropriate to the 
paraboloidal approximation to spherical wave fronts. 
The function pl (x, y) may be taken as that  appropriate 
to spherical wave fronts including obliquity factors. 
The only restriction which we place on it is that it 
must have radial symmetry about the origin. 

A straightforward argument then gives the result 
that  y~(x, y) must have the same symmetry as the 
Cfn(X, y). Thus, the function qj(x, y) corresponding to 
the first layer must from its definition, have the same 
symmetry as ~1 (x, y). Convolution of this function 
with the radially symmetric function p~(x, y) will 
change the phase and amplitude distribution around 
the peaks but not the symmetry. Similarly multiplica- 
tion by the function qe(x, y), identical with q~(x, y), 
will not affect the symmetry; nor will any of the 
operations of convolution and multiplication involved 
in the calculation of y~(x, y) from equation (8). The 
argument may be intuitively more obvious for the 
case that  the ~n (x, y) are composed of isolated, radially 
symmetric peaks. Then convolution with the radially 
symmetric pn (x, y) and multiplication by the identical 
functions qn(x, y) will change the amplitude and phase 
distributions of the peaks but not the coordinates of 
the points about which they are radially symmetric. 
The wave function on the exit face, ~(x, y) will there- 
fore have radially symmetric peaks in exactly the 
same positions as, though of more complicated form 
than, the peaks o~ the ~unctlon q%(x, y) and so must 
have exactly the same symmetry. 

The diffraction pattern corresponding to V;(x, y), 
which is the pattern given by dynamic diffraction for 
an arbitrary thickness H, will therefore have the same 
symmetry and the same absences as the planar section 
of the reciprocal lattice space which corresponds to 
the diffraction pattern given kinematically by the 
distribution Cfn(X, y). Hence, if the electron beam is 
exactly parallel to a principal axis of the crystal, 
no forbidden reflections can be generated by dynamic 
scattering. 
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These arguments do not, of course, apply under the 
conditions for which, for example, the forbidden (222) 
reflection from the diamond-type lattice has been 
shown theoretically and in practice to appear. In 
such cases the incident beam is not parallel to a prin- 
cipal crystal axis and the repetition distance (the 
effective unit cell dimension) in the beam direction, 
is then very large and the approximations we have 
made break down. Our arguments apply strictly only 
when the beam direction coincides exactly with the 
crystal axis. I t  is to be expected that  the forbidden 
reflections will be absent only for a narrow range of 
beam orientations. A rough estimate of the width of 
this range may be obtained as follows. 

A slight misorientation of the beam is equivalent to 
a slight progressive displacement of the origins of the 
functions q,,(x, y) as n increases, the displacement of 
the origin of q:v(x, y) relative to that  of ql (x, y) being 
a l l ,  when ~ is the angular deviation from the exact 
orientation. In v2(x, y) therefore, there will be a com- 
plicated distribution of peaks along a line of length 
al l ,  instead of a single radially symmetric peak, for 
each atomic peak in the projection ~ ( x ,  y). If the 
length ~H of this line of peaks is much less than the 
average distance between atom peaks in ~ ( x ,  y), 
very little interaction of the various peaks will occur 
and it will be possible to express v2(x , y) in the form 
epn(x, y) * w(x, y), where w(x, y) is some complicated 
'peak function'. The diffraction pattern can therefore 
be written 

U(h, k) = E~(h, It). W(h, k) ,  

where En (h, ]c) and W (h, It) are the Fourier transforms 
of ~n (x, y) and w(x, y) respectively. Then if reflections 
are forbidden kinematically so that  E~(h, k) = 0, we 
have also U(h, ]c) = O. 

If the lines of peaks of length ~H overlap ap- 
preciably it will not be possible to express ~0(x, y) as 
a convolution, and the forbidden reflections may occur. 
The deviation in orientation for which it may be 
expected that  forbiddens will appear is thus of the 
order given by a H =  b, the average distance between 
atomic peaks in the projections ~n(x, y). For example, 
if H = 500 A, b = 1.5 A, we get a critical misorienta- 
tion of a ~ 3 x 10 -a radians. 

Such a misorientation is of the same order as that  
required to introduce appreciable differences in the 
observed intensities of symmetrically-equivalent dif- 
fraction spots because the Ewald sphere passes at 
differing distances from the corresponding reciprocal 
lattice points. If therefore a perfect crystal gives a 
spot pattern in which the intensity distribution does 
not appear to be made unsymmetrical by a tilt of the 
crystal, dynamic diffraction effects cannot give ap- 
preciable intensities to any forbidden reflections. If 
forbidden reflections do appear under such circum- 
stances, it is necessary to find some alternative expla- 
nation such as the occurrence of the so-called 'second- 
ary elastic scattering' by crystals containing defects. 

4. Diffraction by imperfect crystals 

The crystals which have been investigated in connec- 
tion with single-crystal structure analysis by electron 
diffraction methods have almost invariably shown 
evidence of considerable imperfection. Since most of 
these crystals have been of the layer-lattice type, the 
predominating form of defect is the stacking fault in 
which adjacent layers are relatively displaced by a 
translation which is not made up of integral multiples 
of unit cell translations. The kinematic theory of dif- 
fraction from crystals containing stacking faults has 
been developed by many authors in connection with 
X-ray diffraction experiments, but usually with the 
assumption that  the number of faults is sufficiently 
large to allow statistical methods to be used. For 
crystals with thicknesses of the order which would 
make the use of kinematic diffraction theory valid in 
electron diffraction work, such an assumption cannot 
be made unless the average distance between stacking 
faults is very small (i.e., only a few/~), since the total 
crystal thickness must not exceed a few hundred A. 

Provided that  the kinematic theory of diffraction 
can be considered as a valid approximation, the 
distribution function method of analysis (Cowley, 
1957) can be used to treat crystals with any number 
of stacking faults. Thus, the projection of the potential 
distribution, ~(x, y) may be expressed in the form 

of(x, y) = q~°(x, y) . D(x, y),  (9) 

where cf°(x,y) is the projection of the potential 
distribution function of an individual layer of atoms 
and D(x, y) is a distribution function consisting of a 
set of variously weighted 5-functions. By taking the 
Fourier transform of (9) we obtain the reciprocal space 
relationship 

E h k o  -~ 0 Ehk0. Chk0, (10) 

where E°k0 is the structure factor for a perfect crystal 
and Ca~ 0 is the value of the Fourier transform of 
D(x, y) at the point h, k, 0. 

I t  may be noted that  if El~,k0 is zero, E~0 must be 
zero. Thus forbidden reflections cannot be produced 
as a result of purely translational displacements of 
parts of the crystal so long as the kinematic approxima- 
tion is valid. We illustrate this point by reference to 
the orthorhombic form of paraffin hydrocarbons 
examined by electron diffraction methods, for ex- 
ample, by Cowley, Rees & Spink (1951). Single-crystal 
patterns may readily be obtained with the incident 
beam parallel to the c-axis. The relevant projection of 
the structure is then that  shown in full lines in Fig. 4. 
Screw axes parallel to the a and b axes of the structure 
result in the extinction of the h00 and 0k0 reflections 
for h or k odd. If now part of the crystal is translated 
so that  the projections of the atoms take the positions 
shown dotted in Fig. 4, the symmetry of the projec- 
tion ~(x, y) will be changed. The screw axes parallel 
to the a and b axes are no longer evident. However 
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the projection of the structure on either the a or b 
axes still shows a periodicity of half the unit cell edge. 
Hence, although the intensities of the permitted 
reflections will be greatly affected, the odd-order h00 
and 0k0 reflections will remain forbidden. 

b+ % 
t'° "1 
x_~t, 

N~ 

fl) 

a 1 a--> 1 
Fig. 4. The projection along the c-axis of the structure of 

orthorhombic crystals of long-chain n-paraffins (full lines). 
The dotted lines indicate the same projection shifted by an 
arbitrary displacement. 

The range of validity of the kinematic theory is 
usually greater for disordered than for ordered crystals. 
This is clearly seen if we consider only the first-order 
approximation used in section 2 above. In this ap- 
proximation the maximum deviation from the region 
of validity of the kinematic theory depends on the 
maximum value of the projection ~(x,y) of the 
potential distribution. When stacking faults occur, 
the number of atoms directly in line in the beam direc- 
tion is in general decreased, so that  the maximum value 
of ~(x, y) decreases. In this way a single stacking fault 
near the centre of the crystal can reduce the maximum 
value of 9(x, y) by a factor of about 2. 

Under such circumstances the effects of multiple 
elastic scattering become more important in limiting 
the range of applicability of the kinematic theory. 
The diffraction effects may then be formally expressed 
by taking the Fourier transform of the wave function 
at the exit face given by equation (8) with appropriate 
q~(x, y) functions. Calculations for specific cases could 
be made with any required degree of accuracy by 
approximating to (8) by the methods previously 
mentioned, but no such calculations will be made here. 
However, some general conclusions may be drawn 
concerning the appearance of forbidden spots from 
arguments similar to those used in section 3 above. 
Thus if two layers of the crystal mutually displaced, 
are separated by an appreciable distance in the beam 
direction, the atomic peaks due to the first layer will 
be broadened by Fresnel diffraction effects (i.e., by 
convolution with the propagation function) and may 
overlap, and interact with, atomic peaks due to the 
second layer. The effects of such overlapping will not 
have the symmetry of either individual layer, as can 

be seen from Fig. 4 if interactions are imagined be- 
tween closest pairs of projected atomic peaks. Hence 
it will not be possible to express the wave function on 
the exit face by a convolution such as in equation (9), 
and forbidden reflections may appear with appreciable 
intensity. The strength of the forbidden reflections 
will obviously be dependent on the frequency and 
nature of the stacking faults. 

I t  may be noted that  forbidden reflections may be 
generated in other ways by crystal defects of different 
character. :For example if there is a slight rotation of 
one portion of a crystal with respect to another part 
about an axis in the beam direction, the two crystal 
regions will give diffraction spots which do not coincide 
exactly. Because the electron sources used in practice 
are usually of finite size and almost completely in- 
coherent the diffracted beams from the two crystal 
portions will not act as if coherent, even though the 
separation of the diffraction spot centres may be very 
small compared with the spot size. If then beams are 
diffracted successively by the two crystal portions, 
the doubly-diffracted electron beams will behave as if 
incoherent with each other and with the once- 
diffracted beams even though the assembly of singly- 
and doubly-diffracted beams falling around a perfect- 
crystal spot position gives rise to a diffraction spot only 
slightly larger than the spot given by a perfect crystal. 
In particular a forbidden reflection hkl will appear 
with an intensity given by the sum of the intensities 
of beams doubly diffracted by pairs of planes with 
indices hi, k1,11 and h2, k2,1 ~ such that  hl +h~ = 
h,k l+k  2 = k  and 11+12=1. In this way the effect 
of incoherent secondary elastic scattering can be 
produced. I t  seems probable that  this was the case for 
the single-crystal patterns from the paraffin dicetyl 
obtained by Cowley, .Rees & Spink (1951). The as- 
sumption of incoherent secondary elastic scattering 
was therefore made the basis of a method for the 
correction of the intensities of the reflections in a 
single crystal spot pattern and appeared to give satis- 
factory results. 

5. Conclusion 

In this paper we have considered some of the more 
obvious and direct implications of the new approach 
to electron diffraction theory introduced in I. We have 
used ~or the most part, only first-order approximations 
and qualitative arguments. More quantitative results 
can be obtained for particular cases. The accuracy of 
the results, and the amount of computation involved 
will increase as higher order approximations are taken. 

I t  has been shown that no forbidden reflections can 
appear as a result of dynamic scattering in the sym- 
metrical spot patterns given by perfect single crystals 
when the electron beam is parallel to a principal crystal 
axis. Dynamic scattering may, however, give rise to 
forbidden reflections in patterns from perfect crystals 
with markedly unsymmetrical intensity distributions, 
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in the extensive spot patterns from bent crystals and 
in powder patterns. 

Our arguments have indicated that  the range of 
crystal thickness for which single-crystal structure 
analysis is feasible is not l imited to the range of 
validity of the kinematic theory as defined, for ex- 
ample, by the calculations of Blackman (1939) for 
perfect crystals. If the crystals are perfect, the use of 
our first-order approximation not only allows crystal 
structure analysis to be carried out for crystals of 
greater thickness but provides a technique for the 
unambiguous determination of crystal structures 
which involves, in effect, the determination of the 
relative phases of reflections from series of diffraction 
patterns obtained with different crystal thicknesses or 
accelerating voltages. If the crystals are imperfect, it 
has been shown that  the range of validity of the 
kinematic theory is extended. For both perfect and 
imperfect crystals it seems probable that  the use of 
higher-order approximations, involving the effects of 
Fresnel diffraction within the crystal, may extend the 
range of thickness still further although making the 

mathematical  t reatment  of the diffraction observa- 
tions much more cumbersome and requiring more 
detailed knowledge of crystal thickness and imper- 
fections. 
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The theory of the scattering of electrons by crystals previously developed (Cowley & Moodie, 1957a) 
is applied to determine the nature of the image of a crystal lattice obtained with an ideal electron 
microscope, both in- and out-of-focus. :For very thin crystals the pseudo-kinematic theory is applied, 
and for thick crystals the dynamic theory in a two-beam approximation is used. Intensity anomalies 
and 'stepped' structures in micrographs showing the 90 A superlattice spacing of a form of antigorite 
are explained as arising from simultaneous dynamic scattering of a fundamental lattice reflection 
and kinematic scattering of the superlattice reflection. 

It is shown that dynamic scattering can give rise to variations in the spacing and orientation of 
moir6-1ike fringes appearing in electron microscope images of superimposed crystals. 

1. Introduct ion  

In  recent years a number of observations have been 
made of periodic intensity modulations of electron 
microscope images of thin crystals, the periodicities 
corresponding to the separations of prominent lattice 
planes of the crystals. The crystals concerned include 
metal phthalocyanines, (Menter, 1956a; Neider, 1956; 
Suito & Uyeda, 1957) faujasite (Menter, 1956b) and 
molybdenum trioxide (Bassett & Menter, 1957). The 
periodicities observed for these compounds corre- 
sponded to spacings of less than 20 • and have been 
interpreted as given by interference of the first one 
or two diffracted beams with the transmitted beam, 

probably with changes of the relative phase of the 
interfering beams due to the spherical aberration of 
the objective lens. 

On the other hand, several observations have re- 
cently been made of much larger periodicities, of the 
order of 1 O0 A, in which case it seems likely that  the 
interference of the electron beams corresponding to at 
least the first few diffraction orders should not be 
seriously affected by lens aberrations. Examples 
include periodicities of about 40 and 90 A observed 
in samples of antigorite by Brindley, Comer, Uyeda & 
Zussman (1958). Similarly, for the moir6-1ike fringes 
which appear in the electron microscope images of 


